

Novel data relevant for helium ion therapy and their comparison with FLUKA nuclear reaction models

- F. Horst^{1,2}, G. Aricò³, G. Battistoni⁴, K.-T. Brinkmann⁵, F. Cerutti³, A. Ferrari³, A. Mairani⁶, K. Parodi^{6,8}, P. R. Sala^{3,4}, C. Schuy², T. Tessonnier⁸, U. Weber², K. Zink^{1,9,10}
- 1 THM University of Applied Sciences, Institute of Medical Physics and Radiation Protection, Giessen, Germany
- 2 GSI Helmholtz Centre for Heavy Ion Research, Biophysics Department, Darmstadt, Germany
- 3 CERN European Organization for Nuclear Research, Geneva, Switzerland
- 4 INFN National Institute for Nuclear Physics, Sezione di Milano, Italy
- 5 JLU Justus Liebig University, II. Physics Institute, Giessen, Germany
- 6 HIT Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany
- 7 CNAO Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
- 8 LMU Ludwig Maximilian University, Munich, Germany
- 9 UKGM University Hospital Giessen-Marburg, Department of Radiotherapy and -oncology, Marburg, Germany
- 10 FIAS Frankfurt Institute for Advanced Studies, Frankfurt, Germany

International Conference on Monte Carlo Techniques for Medical Applications (MCMA2017) Napoli, Italy, October 16, 2017

Introduction

TECHNISCHE HOCHSCHULE MITTELHESSEN

- GUKA
- Accurate simulation of hadron, heavy ion and electromagnetic particle transport
- Many applications: high energy physics and engineering, radiation protection and shielding, medical physics (**particle therapy**), ...

HIT shielding design

HIT basic data for treatment planning system

T.T. Böhlen et al. *The FLUKA Code: Developments and Challenges for High Energy and Medical Applications.* **Nuclear Data Sheets 120, 211-214** (2014)

A. Ferrari et al. *FLUKA: a multi-particle transport code*. **CERN-2005-10** (2005)

MCMA 2017

Felix Horst

Introduction

Helium ion therapy – an attractive alternative to proton and carbon ion therapy ?

Planned start of patient treatment at the Heidelberg Ion-Beam Therapy Center (HIT): late 2018 !

left: M. Krämer et al. **Med. Phys. 43** (2016) right: M. Rovituso et al. **Phys. Med. Biol.** 62 (2017)

MCMA 2017

Motivation

At HIT, the basic data (Bragg curves and fragment spectra) for the clinical treatment planning system are calculated with FLUKA.

FLUKA slightly overpredicts the ⁴He Bragg peak heights for high energies (large depths)!

T. Tessonnier et al. Phys. Med. Biol. 62 (2017)

MCMA 2017

Dose tail behind Bragg peak caused by nuclear fragments (¹H, ²H and ³H)

Only ~ 50 % of the primary ⁴He ions actually reach the Bragg peak

MCMA 2017

Dose tail behind Bragg peak caused by nuclear fragments (¹H, ²H and ³H)

Only ~ 50 % of the primary ⁴He ions actually reach the Bragg peak

MCMA 2017

TECHNISCHE HOCHSCHULE MITTELHESSEN MCMA 2017

Fragmentation experiment at HIT

- A fragmentation experiment was carried out at HIT in late 2016.
- Charge- and mass-changing cross sections for ${}^{4}\text{He}+{}^{12}\text{C}$ collisions were measured using thin graphite targets and a Δ E-E telescope

GSI

MCMA 2017

Fragmentation experiment at HIT

130 MeV/u ⁴He ions behind 1 cm graphite

Identification of the transmitted ions and generated fragments by correlation of the detector signals and fit methods.

F. Horst et al. Phys. Rev. C 96 (2017)

MCMA 2017

Felix Horst

Fragmentation experiment at HIT: Results

The primary ⁴He fluence decreases with increasing depth due to nuclear reactions.

Tripathi cross section parametrization under-estimates the ⁴He+¹²C reaction cross section by up to 30%.

F. Horst et al. Phys. Rev. C 96 (2017)

G 5)

MCMA 2017

⁴He reaction cross section in FLUKA

Extrapolation from ⁴He+¹²C to ⁴He+¹⁶O for dose calculations in water (H₂O) !

MCMA 2017

Felix Horst

⁴He Bragg curves using adjusted FLUKA model

Distal end of a 190 MeV/u ⁴He Bragg curve in water calculated with the old and new cross section model vs. a measured Bragg curve:

Experimental data aquired at HIT

MCMA 2017

Felix Horst

⁴He Bragg curves using adjusted FLUKA model

Distal end of two ⁴He Bragg curves in water calculated with a new cross section model also considering reactions without fragmentation of the projectile (which we did not measure in our experiment):

New cross section measurements on ¹⁶O targets are required!

Experimental data aquired at HIT

MCMA 2017

Felix Horst

- **GSI**
- Novel nuclear cross sections relevant for radiotherapy with ⁴He ions were presented.
- Based on the new cross section data, first attempts to improve the FLUKA reaction cross section parametrization were performed. Significant effects on calculated depth dose profiles were observed.
- More experimental data in the therapeutical energy range will enable to better tune the FLUKA nuclear reaction models. Especially for dose calculation in water, cross section measurements for ⁴He+¹⁶O would be helpful.
- New measurements are planned to obtain cross section data for ⁴He+¹⁶O collisions using Si and SiO₂ targets.

MCMA 2017

Thanks for your attention !

Part of this research project has been supported by a Marie Skłodowska-Curie Innovative Training Network Fellowship of the European Commission's Horizon 2020 Program under contract number 675265 OMA

MCMA 2017

Felix Horst